Alignment-free Node Embedding for EDA
Congestion Prediction

Mark Coates
Department of Electrical and Computer Engineering

McGill University

wﬁ
o McGill €% Computer Networks
¥ ® Research Laboratory
Networks Research Lab Research Sponsored by NSERC, MITACS,
networks.ece.mcgill.ca Department of National Defence, Huawei

Collaborators: Amur Ghose,Yingxue Zhang (Huawei)

Figures: Vertés et al. 2014; Axel Bruns / QUT Digital Media Research Centre

Electronic Design Automation (EDA) Workflow

* Register Transfer Level (RTL) design: VDHL/ Verilog

* models a synchronous digital circuit in terms of
* flow of signals between hardware registers

* logical operations performed on signals

* Convert to physical layout through logic synthesis
& physical design

Logic Synthesis

Physical Design

Netlist E Structural Embedding

Augmented GNN

A

Congestion

Congestion

Electronic Design Automation (EDA) Workflow

* Logic synthesis

 Convert to a netlist; contains interconnection
information of all circuit elements

* Cells: groups of transistors & interconnects

that provide a Boolean logic function Logic Synthesis

* Physical design

Physical Design

* All circuit elements placed on circuit boards
& connected by wires

Structural Embedding
Augmented GNN

A

Congestion

Congestion

Routing Congestion

* Routing congestion: important metric that reflects the quality of the chip design

* Most EDA tools: congestion predicted AFTER cell placement

* Used as a feedback signal to optimize
placement solution

Logic Synthesis

Physical Design

Structural Embedding
Augmented GNN

Congestion

Routing Congestion

* Routing congestion: important metric that reflects the quality of the chip design.

* Most EDA tools: congestion predicted AFTER cell placement

* Used as a feedback signal to optimize

| luti Structural Embedding
P acement solution

Augmented GNN

Logic Synthesis E :
= =
! |

Problems:

* Large scale circuits - placement iteration is Physical Design =
computationally expensive

Congestion

* Some congestion caused by poor logic
structures cannot be fixed by placement -

Routing Congestion

Routing congestion: important metric that reflects the quality of the chip design.

Goal: Estimate logic-induced congestion at

logic synthesis stage i Netist . structural Embedding
: : J ' Augmented GNN
Provide quick feedback and shorten design susie el | 5
les. : : t
cycles L=o""] .
Map to node regression task Physical Design Plz

Congestion
* Train on one set of netlists (graphs)

* Predict on another set of netlists

Background — Prior Work

» Candidate metrics to identify network structures with high potential of routing congestion:
o size of the local neighborhood
> adhesion of a logic network
> Groups of Tangled Logic (GTL) metric

M. Saeedi et al.,“Prediction and reduction of routing congestion,” in Proc. Int. Symp. Physical Design, 2006.
T. Lin and C. Chu,“Polar 2.0: An effective routability-driven placer;” in Proc. Design Automation Conf., 2014

P. Spindler and F. M. Johannes, “Fast and accurate routing demand estimation for efficient routability-
driven placement,’ in Proc. Design, Automation & Test in Europe Conf., 2007

T.Jindal et al.,“Detecting Tangled Logic Structures in VLS| Netlists,” in Proc. Design Automation Conf., 2010.
P. Kudva et al.,“Metrics for structural logic synthesis,” in Proc. Int. Conf. Computer Aided Design, 2002.

Background — CongestionNet

» 8 layer Graph Attention Network
» Features:

> Trainable embedding of length 50 for each cell type
o Cell’s logic description

> Pin count Layerl

. Linear Layer +
o Cell size Aggregate —> y

Non-Linearity "
Al

Source: R. Kirby, etc. (2019)

R. Kirby et al.,“CongestionNet: Routing congestion prediction using deep graph neural networks,” in
Proc. IEEE Int. Conf. Very Large Scale Integration, 2019.

Background — CongestionNet

Limitations of CongestionNet:

* informative cell features (cell type, pin count and cell size) are not available at the
early logic synthesis stage.

* Requires a large training dataset (over 50 million cells).

* Deep GAT exhibits oversmoothing

Layer L

Linear Layer +
Non-Linearity

) Aggregate

H 4 H,
Source: R. Kirby, etc. (2019)

R. Kirby et al.,“CongestionNet: Routing congestion prediction using deep graph neural networks,” in
Proc. IEEE Int. Conf. Very Large Scale Integration, 2019.

Embedding Methods: Proximity
Relates to the distance between two vertices e e
: 6 0?0 6?@

Neighboring vertices have most similar embeddings. e G

. o L O
Embeddings learned on one graph cannot be @ G
directly used in another distinct graph. Proximity-based (blue and green) similarity

across two disjoint graphs.

Random-walk based methods like node2vec, LINE
and DeepWalk.

A. Grover and . Leskovec, “node2vec: Scalable feature learning for networks,” KDD 2016.
J.Tang et al.,“LINE: Large-scale information network embedding,” WWW 2015.
B. Perozzi et al.,“Deepwalk: Online learning of social representations,” KDD 2014.

Example: node2vec

Maximize log-probability of observing a network
neighbourhood Ng(u) for a node u conditioned on
its feature representation f(u)

max Y log Pr(Ns(u)l (w)

ueV

Source:A. Grover (2016)

Assumptions: conditional independence Pr(Ng(u)|f(u)) = H Pr(n;|f(u))
n;ENg(u)

Conditional likelihood is softmax of dot-product

ey — P (na) - f(w))
Pr(n;| f(u)) Z’UEV exp(f(v) - f(u))

Example: node2vec

Problem becomes:

Source:A. Grover (2016)

Expensive to compute the partition function Z, = Z exp(f(u) - f(v))
veV

Can use stochastic gradient ascent, but still slow for million-node graphs

Sample the neighborhood: biased random walk

Example: DeepWalk

* Problem becomes:

max oo Privluy o) XP(f() - f(w))
; (U%:EDI g Pr(viu) Pr(v|u) S o) F()

* Set D derived by:
* co-occurrences in windows of length T hops in a set of length L random walks
(y walks starting at each node)

Embedding Methods: Structural similarity

* Relates to properties of a node such as its
degree or spectral properties,

* Two nodes can be structurally similar even if
they belong to two different graphs.

* GraphWAVE, Role2vec, and struct2vec

Structural (red) similarity across two
disjoint graphs.

4, 5 and C, D are similar even though they
belong to two different graphs.

Embedding Alignment

* Consider two embeddings X, X obtained using a proximity embedding method
on two graphs G, G’

* Wasserstein-Procrustes graph alignment:

* identify orthogonal matrix Q and a permutation matrix P to minimize the
distance between XQ and PX’

argmin P, Q || XQ — PX'||?
PcP,,Qe0O,

O>0W
ooOw>

PX’
I

when X, X’ are of different sizes xo

M%

v
G PX'
This becomes more difficult to understand 0 é g
X

AOWON -

X0

Matrix Factorization

Pointwise Mutual Information (PMI) Matrices
» X:|V|Xd embedding matrix representing the d-dimensional embeddings for all v € |V|

e Similarity metric between two nodes i, j can be measured as (X;, X;).

o Similarity pattern for all pairs (i, j) of nodes is fully captured in the matrix XX'

J. Qiu et al., “Network embedding as matrix factorization: Unifying Deepwalk, LINE, PTE, and node2vec,”
WSDM 2018.

Matrix Factorization

Pointwise Mutual Information (PMI) Matrices

» X:|V|Xd embedding matrix representing the d-dimensional embeddings for all v € |V|

Similarity metric between two nodes i, j can be measured as (X, X;).

Similarity pattern for all pairs (i, j) of nodes is fully captured in the matrix XX

o XXT is the PMI matrix

Node embeddings can be directly obtained by factoring the PMI matrix.

After conducting an eigendecomposition of the PMI matrix, we have USU” and use
US1/? as the embeddings.

Obtaining the PMI matrix: Infinite Walk

For DeepWalk, as the number of walks y at each node approaches infinity and
the walk length L approaches infinity, the PMI matrix approaches

T
1
M+t = log (’UG (T ZPk> D1>
k=1

* v :volume of the graph — sum of degrees of all vertices

e P =D714:random walk transition matrix

J. Qiu et al., “Network embedding as matrix factorization: Unifying Deepwalk, LINE, PTE, and
node2vec,” WSDM 2018.

Infinite Walk

If we let T approach infinity too:
M =117 + D72 (L* —1) D~/
o« Here D =2 and L = D~Y2LD~'/2 is the normalized Laplacian

Vg

S. Chanpuriya and C. Musco, “Infinitewalk: Deep network embeddings as Laplacian embeddings with
a nonlinearity,” KDD 2020.

Matrix Factorization

Pseudo-inverse is annoying. Let’s directly use the Laplacian instead.

', =117 + Tr(Dp)D,' ’LpD "2
/

M
/! — 11T P
P t o

Clamp M to range [L,H] with L>0 and set M’fg + log MIJ,D

L & H: numerical stability; C controls the extent to which a node influences its neighbour

S. Chanpuriya and C. Musco, “Infinitewalk: Deep network embeddings as Laplacian embeddings with
a nonlinearity,” KDD 2020.

Datasets

Dataset: We extract two publicly available netlist datasets:

(1) Superblue circuit lines from DAC 2012 which we place via DREAMPLACE
(2) A collection of circuits provided with the OPENROAD framework.

Graph Generation:
* Netlist data of each design is converted to a graph

e This represents the circuit elements as nodes and their interconnections as edges.

Datasets

Dataset: We extract two publicly available netlist datasets:
(1) Superblue circuit lines from DAC 2012 which we place via DREAMPLACE
(2) A collection of circuits provided with the OPENROAD framework.

Circuit name | Nodes Terminals | Nets
Train set

Superblue2 1014029 | 92756 990899
Superblue3 9019911 86541 898001
Superblue6 1014209 | 95116 1006629
Superblue7 1364958 | 93071 1340418
Superblue9 846678 57614 833808
Superbluell 954686 94915 935731
Superbluel14 634555 66715 619815

Datasets

Congestion Maps:
e Generated by NCTUGR for Superblue circuit lines
e Used built-in FastRoute for OPENROAD dataset.

Label Generation:
e Board is partitioned into grids

o Congestion value for each grid cell = wiring demand divided by routing capacity.
» Congestion value for each grid cell is assigned to all nodes located in the grid cell

e This is used as ground-truth labels for the training.

Method — Training and inference

Placement Cell Position
DoOoaO
ODooo
OoooOoao
Placement Tool oooao
_____ > Y T— Node-level
I | I PPing Congestion Label
| — T 1 I
| I I |
I I I I
: T T T T |
I Congestion Map Congestion per grid sttt |
| !
I d |
I A
Graph . f I
Partition Encoding Input « -
L Congestion
—® Prediction
Netlist Sub-graph Embedding GNN Model

Schematic of our GNIN method

Cross-graph Network Embedding Alignment

o —— . —— — — —— — — — — — — — —— — — — — ———

Sub-graph level

Netlist sub-graph Matrix Factorization

: I
|
| Partition ;) Node |
| Adjacency Matrix embeddings |
| I
' G] |
| G2 |
| Al -> |
| |
| |
| |
|
| [| | HEE |
[R B H ER |
I= N
|
' . Sanm L E i
|
I = .l.l.:
l Gs3 u |
|] HENEN |
' |) i
| | -5 I
: As L E "R
I
I C I |

Input Features

* Node Embedding
® Cell Attributes

~— 1|

Structural embedding enhanced GNN training

Hidden Layer

I(______ ! Hidden
| : Layers
|
|

GNN Output

(2)

P
e

JF(H,A)=c(AH"W®)

GraphSAGE: 2 hidden layers of size 200 and 160 + MLP with 2 hidden layers

¥ = MLP([[X; E]; SAGE([X;; E])]))

Congestion

Metrics and baselines

Metrics
» Pearson correlation coefficient (PCC)
* Spearman correlation

o Kendall correlation

Baselines
* Neighborhood size: the number of nodes, reachable from v, within distance k.
* Adhesion: maximum min-cut between v and other nodes in the neighborhood.
e Groups of tangled logic (GTL):

o Measure that examines the structure of the graph cut around node v.

> Reflects how interconnected the local clusters of the cell are

e CongestionNet

Results — Prediction

Ground truth congestion map. Predicted congestion map

Results — Prediction Accuracy

Lower level congestion

Methods Pearson Spearman Kendall
Node | Grid | Node | Grid | Node | Grid
Adhesion metric 0.09 0.16 | 0.06 0.20 | 0.06 0.14
Neighbourhood metric 0.02 0.04 | 0.18 0.27 | 0.13 0.18
GTL metric 0.02 0.01 | 0.14 0.23 | 0.10 0.16
CongestionNet 0.26 0.35 | 0.27 0.33 | 0.19 0.24
Embedding-enhanced GNN (ours) | 0.31 043 | 0.34 044 | 0.25 0.31

Results — Runtime

RUNTIME COMPARISON (SECONDS) BETWEEN SUBGRAPH-LEVEL TRAINING AND BLOCK SAMPLING

Architecture runtime comparisons (per graph per epoch)
Superblue

OPENROAD

GNN architecture

Training time

Inference time

Training time

Inference time

No partitioning (ours + block sampler)

56.2

65.4

9.8

14.1

With partitioning

Our architecture

2.2

6.1

0.22

2.5

CongestionNet

6.4

8.7

0.78

3.8

 Partitioning the graph leads to significant improvements in runtime

» The inference time is reduced by up to 30% on both datasets compared to CongestionNet.

Results — Runtime

MATRIX FACTORIZATION RUNTIME VS OTHER EMBEDDING METHODS IN SECONDS

Embedding runtime comparisons

Embedding method | Train time | Alignment time | Train time | Alignment time
Node2vec 250.6 1750.4 45.2 T55:9

LINE 167.8 15552 I 802.1
DeepWalk 143.7 1566.5 221 783.4

Ours 80.4 - 18.2 -

» Matrix factorization embedding method saves up to 90% runtime compared to classic
methods plus explicit alignment

Key Findings

Proximity-based node-level embedding methods require post-processing (alignment) to be
used for cross-graph prediction.

Matrix-factorization based embedding learning combined with subgraph level training

o faster, more effective, and can generalize to unseen graphs.
Concatenating cell structural embeddings with cell attributes directly improves performance.
No informative cell attributes ™™ meaningful prediction from netlist embeddings alone.

Instead of deep GATSs, wide and shallow SAGE-GNNs achieve superior performance.

